Plasma membrane delivery of the gastric H,K-ATPase: the role of beta-subunit glycosylation.

نویسندگان

  • O Vagin
  • S Denevich
  • G Sachs
چکیده

The factors determining trafficking of the gastric H,K-ATPase to the apical membrane remain elusive. To identify such determinants in the gastric H,K-ATPase, fusion proteins of yellow fluorescent protein (YFP) and the gastric H,K-ATPase beta-subunit (YFP-beta) and cyan fluorescent protein (CFP) and the gastric H,K-ATPase alpha-subunit (CFP-alpha) were expressed in HEK-293 cells. Then plasma membrane delivery of wild-type CFP-alpha, wild-type YFP-beta, and YFP-beta mutants lacking one or two of the seven beta-subunit glycosylation sites was determined using confocal microscopy and surface biotinylation. Expression of the wild-type YFP-beta resulted in the plasma membrane localization of the protein, whereas the expressed CFP-alpha was retained intracellularly. When coexpressed, both CFP-alpha and YFP-beta were delivered to the plasma membrane. Removing each of the seven glycosylation sites, except the second one, from the extracellular loop of YFP-beta prevented plasma membrane delivery of the protein. Only the mutant lacking the second glycosylation site (Asn103Gln) was localized both intracellularly and on the plasma membrane. A double mutant lacking the first (Asn99Gln) and the second (Asn103Gln) glycosylation sites displayed intracellular accumulation of the protein. Therefore, six of the seven glycosylation sites in the beta-subunit are essential for the plasma membrane delivery of the beta-subunit of the gastric H,K-ATPase, whereas the second glycosylation site (Asn103), which is not conserved among the beta-subunits from different species, is not critical for plasma delivery of the protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycosylation is essential for biosynthesis of functional gastric H+,K+-ATPase in insect cells.

The role of N-linked glycosylation in the functional properties of gastric H+,K+-ATPase has been examined with tunicamycin and I-deoxymannojirimycin, inhibitors in glycoprotein biosynthesis and glycoprotein processing respectively. Tunicamycin completely abolished both K+-stimulated and 3-(cyanomethyl)-2-methyl-8-(phenylmethoxy)-imidazo[1,2a]pyridine (SCH 28080)-sensitive ATPase activity and SC...

متن کامل

Differential localization of human nongastric H(+)-K(+)-ATPase ATP1AL1 in polarized renal epithelial cells.

The human H(+)-K(+)-ATPase, ATP1AL1, belongs to the subgroup of nongastric, K(+)-transporting ATPases. In concert with the structurally related gastric H(+)-K(+)-ATPase, it plays a major role in K(+) reabsorption in various tissues, including colon and kidney. Physiological and immunocytochemical data suggest that the functional heteromeric ion pumps are usually found in the apical plasma membr...

متن کامل

Use of the H,K-ATPase beta subunit to identify multiple sorting pathways for plasma membrane delivery in polarized cells.

A dynamic equilibrium between multiple sorting pathways maintains polarized distribution of plasma membrane proteins in epithelia. To identify sorting pathways for plasma membrane delivery of the gastric H,K-ATPase beta subunit in polarized cells, the protein was expressed as a yellow fluorescent protein N-terminal construct in Madin-Darby canine kidney (MDCK) and LLC-PK1 cells. Confocal micros...

متن کامل

Up-regulation of plasma membrane H+-ATPase under salt stress may enable Aeluropus littoralis to cope with stress

Plasma membrane H+-ATPase is a major integral membrane protein with a role in various physiological processes including abiotic stress response. To study the effect of NaCl on the expression pattern of a gene encoding the plasma membrane H+-ATPase, an experiment was carried out in a completely random design with three replications. A pair of specific primers was designed based on the sequence o...

متن کامل

FUNCTIONAL SIGNIFICANCE OF THE -SUBUNIT FOR HETERODIMERIC P-TYPE ATPases

We have reviewed the structural and functional role of the -subunit in a subfamily of the P-ATPases known as the / -heterodimeric, cation-exchange ATPases. The subfamily consists of the various isoforms of Na+/K+ATPase and H+/K+-ATPase, both of which pump a cation out of the cell (Na+ or H+, respectively) in recycle exchange for K+. Much of the earlier work has emphasized the functional activit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 285 4  شماره 

صفحات  -

تاریخ انتشار 2003